In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme.
نویسندگان
چکیده
The existence of a postnatal prostate stem cell is supported by several types of evidence. Withdrawal of androgen leads to involution of the gland, but readdition can rapidly stimulate regeneration. Tissue fragments derived from mouse or rat prostatic epithelia from midgestation embryos or adult mice, when combined with tissue fragments from urogenital sinus mesenchyme and grafted under the kidney capsule, can regenerate prostatic structures. Indirect evidence supports that the stem cell population is contained within the basal layer. Purified prostatic stem cell preparations would be useful to define the physical and functional properties required for regeneration and to compare with cells that accumulate during abnormal growth states, like prostate cancer. We have developed a regeneration system using dissociated cell populations of postnatal prostate epithelia and embryonic urogenital sinus mesenchyme. Efficient in vivo regeneration of prostatic structures in the subcapsular space of the kidney was observed within 4-8 wk with as few as 103 epithelial cells from prostates derived from donors 10 d to 6 wk of age. The regenerated structures show a branching tubular epithelial morphology, with expression of a panel of markers consistent with prostate development. Donor epithelial populations can be readily infected with GFP expressing lentiviral vectors to provide integration markers and easy visualization. The cell preparations of urogenital sinus mesenchyme can be expanded in short-term in vitro culture while their inductive capabilities are retained. Further definition of the subpopulation of prostate epithelial cells containing the regeneration activity should be possible with such technologies.
منابع مشابه
A developmental stage-dependent switch of the mechanisms for prostate epithelial maintenance.
P revious studies demonstrated that adult murine prostate basal and luminal cells are independently self-sustained, but prostate basal cells possess the potential to differentiate into multiple lineages upon induction by embryonic urogenital sinus mesenchyme. Nevertheless, it is unknown how prostate epithelia mature during the postnatal stage. Recently, Ousset et al. showed that some prostate b...
متن کاملDissociated Prostate Regeneration under the Renal Capsule.
Tissue recombination models are useful for studying cancer initiation, progression, and metastasis. They also provide an in vivo environment in which to investigate the functional role of stem cells in tissue repair. In this protocol, we describe in detail the dissociated prostate regeneration assay. Dissociated adult murine prostate cells are combined with embryonic urogenital sinus mesenchyma...
متن کاملFormation of human prostate epithelium using tissue recombination of rodent urogenital sinus mesenchyme and human stem cells.
Progress in prostate cancer research is severely limited by the availability of human-derived and hormone-naïve model systems, which limit our ability to understand genetic and molecular events underlying prostate disease initiation. Toward developing better model systems for studying human prostate carcinogenesis, we and others have taken advantage of the unique pro-prostatic inductive potenti...
متن کاملSex specific retinoic acid signaling is required for the initiation of urogenital sinus bud development
The mammalian urogenital sinus (UGS) develops in a sex specific manner, giving rise to the prostate in the male and the sinus vagina in the embryonic female. Androgens, produced by the embryonic testis, have been shown to be crucial to this process. In this study we show that retinoic acid signaling is required for the initial stages of bud development from the male UGS. Enzymes involved in ret...
متن کاملInduction of prostatic morphology and secretion in urothelium by seminal vesicle mesenchyme.
Mesenchymal-epithelial interactions are essential for the development of the male reproductive tract. Tissue recombination experiments have been used to define the characteristics of these interactions. When mesenchyme, embryonic connective tissue, is recombined with epithelium from another organ an instructive induction may occur in which the developmental fate of the epithelium is altered. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 Suppl 1 شماره
صفحات -
تاریخ انتشار 2003